

DE-EE0009064 Integrated Mechanical System Pods (IMSPs)

Phius Presentation October 2022

Brett Webster, Galen Staengl

Project Background

The business-as-usual approach to deep energy retrofits of multifamily buildings is **time-consuming disruptive**, **bespoke**, **and costly**, resulting in low retrofit rates ($\sim 1\%/\text{yr}$), unrealized energy savings, and poor indoor living environments.

Prefabricated building envelope and packaged, multifunction mechanical system solutions represent an integrated retrofit package that could help unlock \$4.3 billion of annual energy savings in the multifamily sector just in ASHRAE climate zones 3, 4, and 5.

Research Questions

- What are the integrated mechanical system prototypes that can best serve the market needs for targeted multifamily building typologies?
- What design and manufacturing approaches will allow these prototypes to commercialize and scale up quickly, adapt to a variety of existing conditions, easily integrate evolving technologies, and achieve cost compression necessary for widespread adoption?

Project Goals

Value Proposition

- Easy to install supports occupied retrofits
- Better occupant comfort
- Improved indoor air quality
- Opportunity for integration with panelized envelope systems
- Opportunity for cost compression at scale

IMSP-C

- Designed for applications in buildings with central HVAC and DHW systems
- Targeting NE Midrise MF Building Typology

IMSP-U

- Designed for applications where HVAC and DHW equipment is located in individual apartments
- Targeting CA Lowrise MF Building Typology

Both prototypes will be

- all electric
- assembled with off-the-shelf components
- designed to be deployed in low-load applications driven by corresponding envelope improvements or mild climates

Project Team Roles

RMI: Prime, management of grant and overall project strategy and vision

Staengl Engineering: Prototype design

TKF: Prototype fabrication, commercialization plan

SCOE: Prototype testing

LBNL: Ventilation design advisor, test plan peer review

AEA: CA typology & field advising

Phase 1 Accomplishments

- Product Requirements
- Prototype Detailed Designs
- Building Conceptual Designs
- Controls Package
- Prototype Fabrication
- Testing
- Market Analysis and Commercialization Plan

Completed Prototypes!

RMI – Energy. Transformed. IMSP-C IMSP-U

IMSP-C

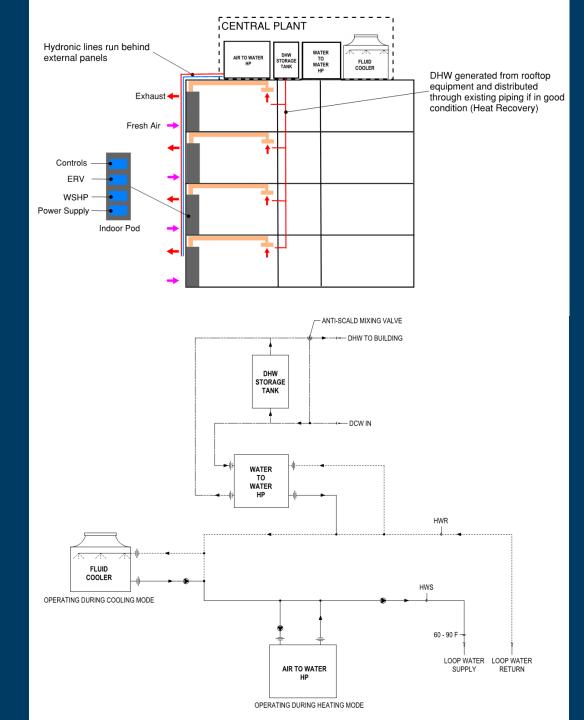
BUILDING TYPOLOGIES - NE MIDRISE

Typical mechanical systems for identified prototypical buildings

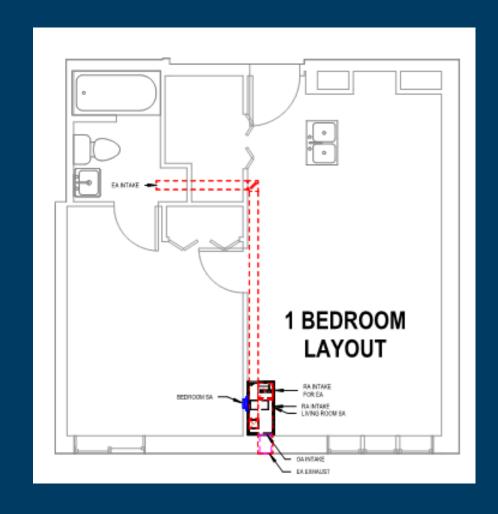
System	#1	#2	
# Units Represented	1,429,380	569,540	
% Units Represented	20.7%	8.3%	
Heating System	Steam or hot water system with radiators or pipes	Central furnace	
Heating Fuel	Piped NG	Piped NG	
Cooling System	Room AC	Central AC	
Water Heater in Apt?	No	Yes	

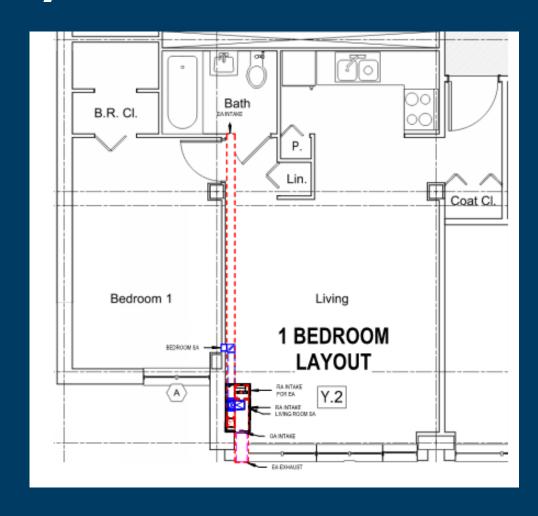
Source: RECS - New England, Mid-Atlantic, East North Central

System	NYC		Boston	
	20-49 units	50+ units	20-49 units	50+ units
Heating System	30% Furnace 60% Steam/hot water	• 35% Furnace • 49% Steam/hot water	• 46% Furnace • 30% Steam/hot water	• 59% Furnace • 17% Steam/hot water
Cooling System	16% Central AC84% Room AC	31% Central AC69% Room AC	43% Central AC57% Room AC	69% Central AC31% Room AC

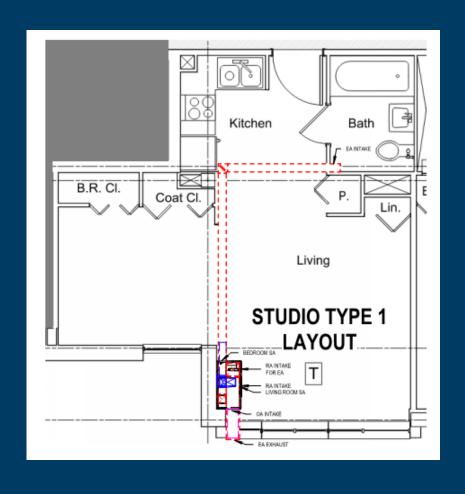

Source: AHS

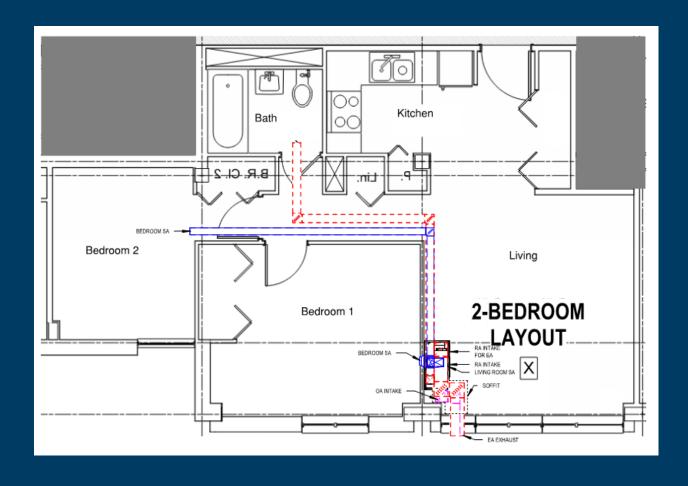
IMSP-C Prototype




ERV with boost | Heating/Cooling | Economizer | Central DHW | Requires 1 30A, 115V connection plus central plant electrical

RMI - Energy. Transformed.




IMSP-C 1-bd Apartment Layouts

IMSP-C Studio, 2-bd Apartment Layouts

IMSP-U

BUILDING TYPOLOGIES – CA LOWRISE

762,018 Units

5-9 Units, 2 Stories: 70%

- Pre-1980: 60%
- 80s-90s: 30%
- Modern: 10%

647,511 Units

10-19 Units, 2 Stories: 70%

- Pre-1980: 60%
- 80s-90s: 30%
- Modern: 10%

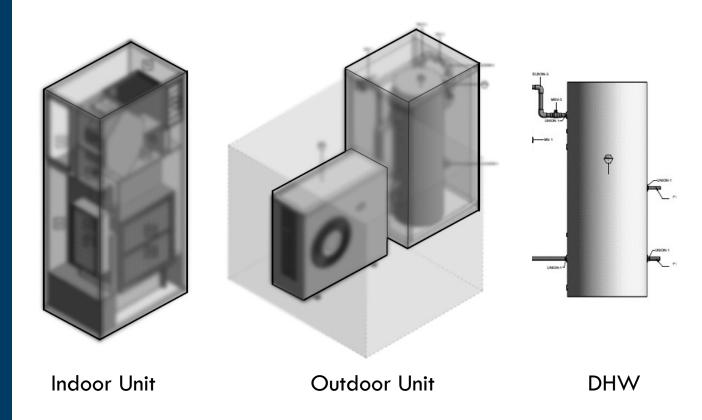
629,470 Units

20-49 Units, 2-3 Stories: 79%

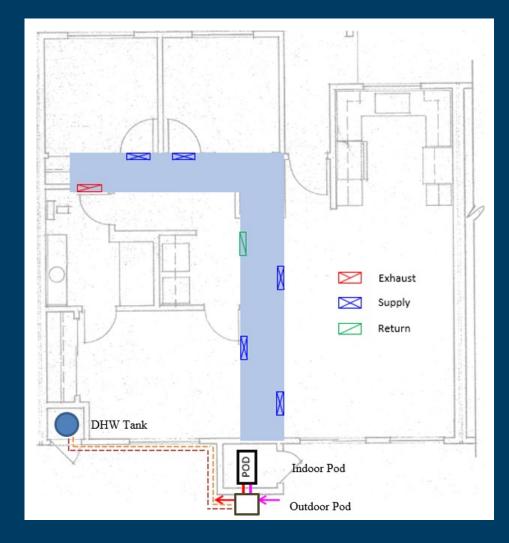
- Pre-1980: 62%
- 80s-90s: 27%
- Modern: 11%

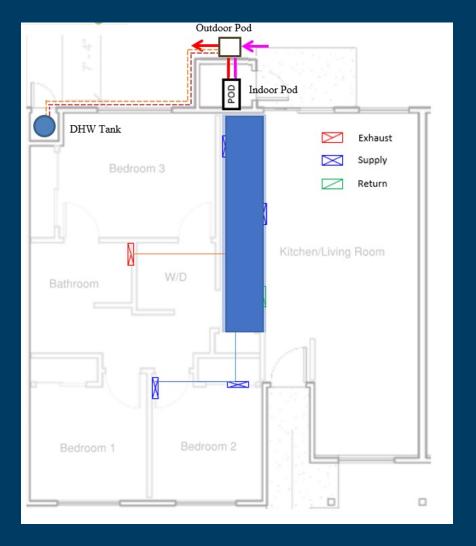
Heating System	 Natural gas gravity wall furnace Central gas forced air furnace 	 Natural gas gravity wall furnace Central gas forced air furnace 	 Natural gas gravity wall furnace (rarer) Electric Resistance Wall Heater/Baseboard Central Steam/Hydronic Boiler w/radiator
Cooling System	No cooling In-unit system	No cooling In-unit system	No coolingIn-unit system
DHW System	In-unit non-condensing tank	In-unit/central non-condensing tank Central boiler	Central non-condensing tank Central boiler

^{*} Data availability statewide was limited and this data is skewed towards Central Valley and Bay Area building types


IMSP-U Prototype

EPC 19-032 LG-MM Concept


All-in-one Unit


IMSP-U "Split Pod" Concept

ERV | Heating/Cooling | Economizer | Fire smoke mode | DHW | Demand flex | Requires 1-2, 240V and 1 120V electrical connections

IMSP-U Apartment Layouts

Distribution Duct Concept – both products

- Phenolic ductwork with finish face (paintable) could eliminate the need for site-built soffits.
- Lightweight and insulated
- Easy to assemble on-site
- Multiple air pathways within one duct

RMI - Energy. Transformed.

Test Setup

"Outdoor" Chamber Power Monitoring and Test Controls

Pod Water Supply

Airflow and Capacity Measurements

Strategic Pivot

Team decision to prioritize IMSP-C for demonstration and commercialization efforts moving forward. Primary factors driving this decision:

- First costs
- Energy efficiency advantage
- Path to market
- Applicability of IMSP-C in both target geographies

BUILDING TYPOLOGIES – CA LOWRISE

762,018 Units

5-9 Units, 2 Stories: 70%

- Pre-1980: 60%
- 80s-90s: 30%
- Modern: 10%

647,511 Units

10-19 Units, 2 Stories: 70%

- Pre-1980: 60%
- 80s-90s: 30%
- Modern: 10%

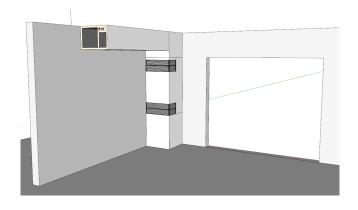
629,470 Units

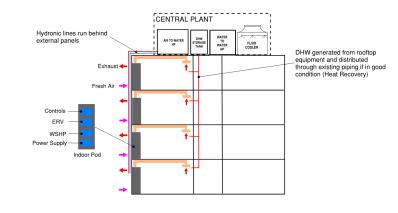
20-49 Units, 2-3 Stories: 79%

- Pre-1980: 62%
- 80s-90s: 27%
- Modern: 11%

Heating System	 Natural gas gravity wall furnace Central gas forced air furnace 	Natural gas gravity wall furnace Central gas forced air furnace	 Natural gas gravity wall furnace (rarer) Electric Resistance Wall Heater/Baseboard Central Steam/Hydronic Boiler w/ radiator
Cooling System	No cooling In-unit system	No cooling In-unit system	No cooling In-unit system
DHW System	In-unit non-condensing tank	In-unit/central non-condensing tankCentral boiler	 Central non-condensing tank Central boiler

^{*} Data availability statewide was limited and this data is skewed towards Central Valley and Bay Area building types


IMSP-C Retrofit Package



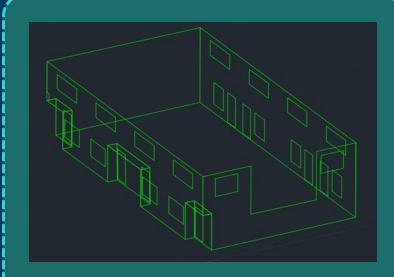
DE-EE0009064

A Recipe for ABC Multifamily Retrofits: Technologies, Financing, and Project Delivery

ABC Phase 2

Phase 1 Integration

9064
Integrated Mechanical System Pods


IMSP-C, Central Plant Concepts,
Prefabricated Ductwork

9062
Transforming Public Housing with
Deep Energy Retrofits

Integrated design and engineering, standardized solution, prefabricated panel, financing mechanism

9067
Streamlining BIM/CAD/CAM
Conversions for Panel Manufacturing

Improve scan to panel manufacturing workflow, 3D scanning to wireframe model creation

Integrated Mechanical System Pod (IMSP)

TKFabricate

Manufacturing, Commercialization

Staengl Engineering

Design & Engineering

Morben

Controls, User Interface

Optimized Thermal Systems

Lab Testing, Field Validation

Envelope Panel

Open Market ESCO

Panel coordination with design team, contracting, digital workflow demonstration

Signetron

Scanning to BIM/CAD/CAM

Panel Manufacturer

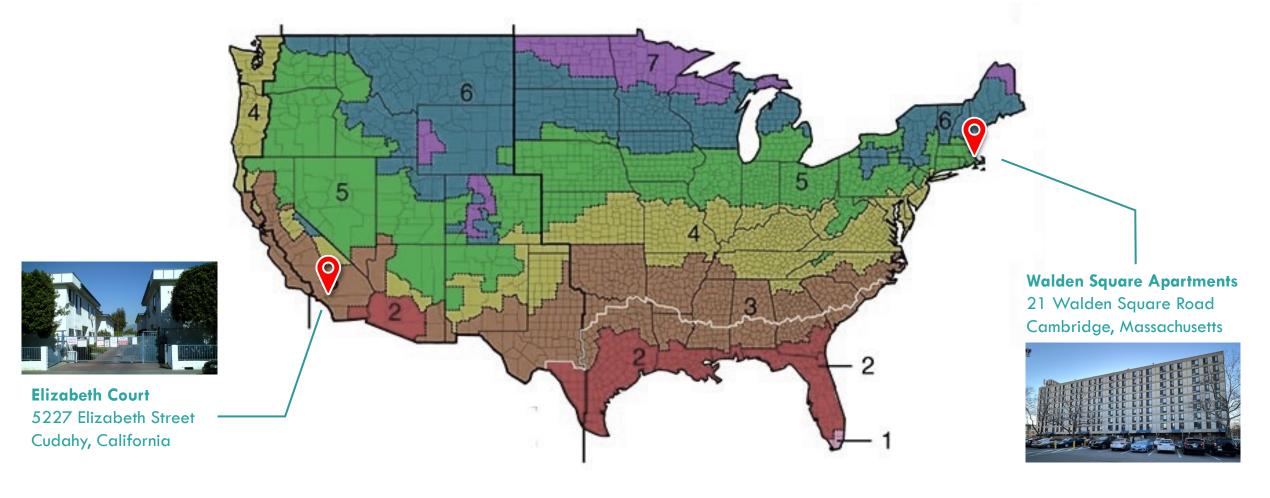
IMSP & Panel Integration

Finance and Project Delivery

Open Market ESCO

Demonstration lead. Whole building retrofit design, financing and construction activities. Market scaling.

M&V



Lawrence Berkeley National Lab

Whole building retrofit M&V

Demonstrations

Demonstration Sites: 100% Low-Income Housing

MA Demonstration: Walden Square Apartments

- 9-story midrise (120 units) + 5 lowrise complexes (120 units)
- 100% low-income apartments
- Owned and Managed by WinnCompanies

Envelope

Min. Wall Insulation 30+ y/o windows

DHW

Central Condensing
Gas Boilers

Heating

Condensing Gas
Boiler Plant with
Hydronic Baseboard

Cooling

Window ACs

MA Demonstration Retrofit Package

Envelope

Scanning to BIM/CAD/CAM workflow

Prefabricated unitized retrofit panel

Mechanical

IMSP-C & Whalen Whispertherm

(Partial) Central plant upgrade

Prefabricated ductwork

REALIZE-MA & Building America 8185 Industrialized Retrofit Envelope Specs

	<u> </u>	
Passive Measures	ASHRAE CZ 5A	ASHRAE CZ 4A
Wall R-value	R-32	R-27
Roof R-value	R-41	R-39
Basement/Ceiling R-value	R-22	R-13
Infiltration (cfm50 per sqft wall area)	0.08	0.08
Window	Whole window U-0.26, SHGC 0.41	Whole window U-0.26, SHGC 0.38

CA Demonstration: Elizabeth Court

- 13 units, 2 stories
- 100% low-income rental housing
- Owned by Corporation for Better Housing (CBH)
- Managed by WinnCompanies

Envelope

Min. Wall Insulation
Single Pane Windows

DHW

Central Gas Boiler
Plant

Heating

Individual Furnaces

Cooling

Window ACs

CA Demonstration Retrofit Package

Envelope

New Roof + insulation

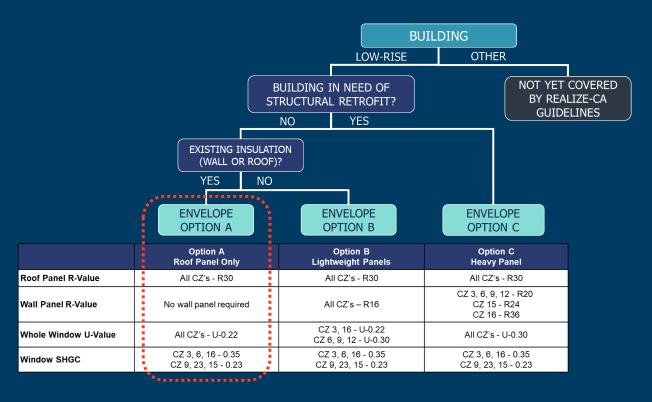
High performance windows

Air sealing

Mechanical

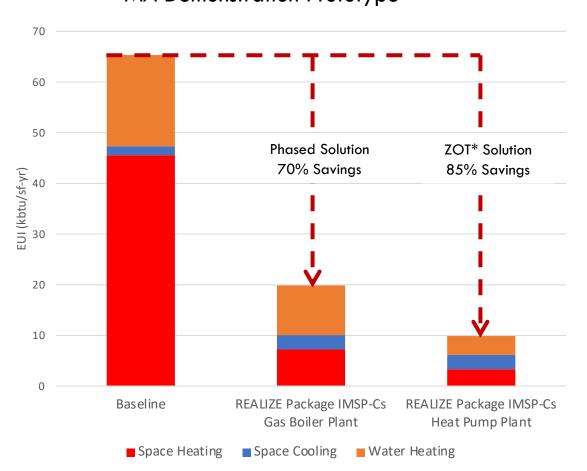
IMSP-C

Prefabricated ductwork


New central plant + new piping distribution

GEBs

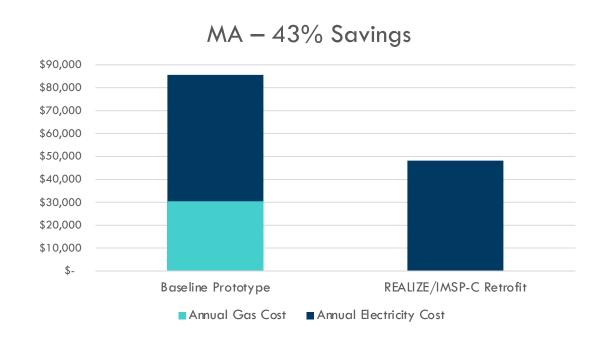
Thermal storage for demand flex

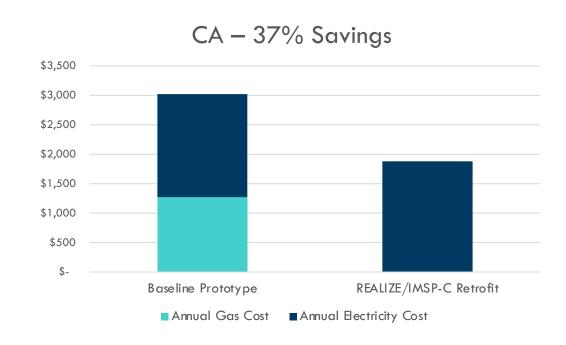

Solar PV

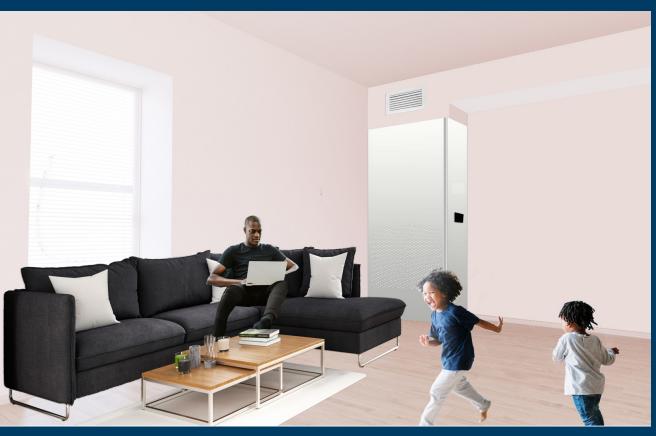
REALIZE-CA Retrofit Guidelines

Achieving ABC Energy Saving Target

MA Demonstration Prototype




CA Demonstration Prototype


^{*} Zero Over Time (ZOT): A phased decarbonization approach that optimizes retrofit investments at key trigger events in a building's lifecycle.

Operational Cost Savings

Finished Product

