Texas

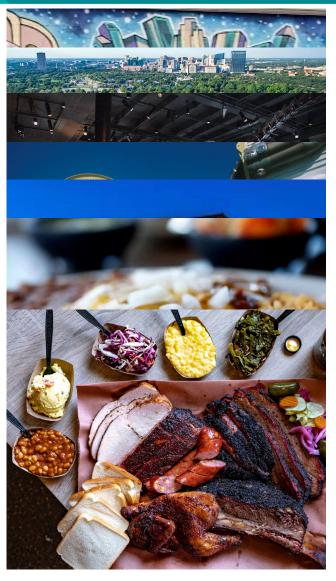
Ecotech Consulting & Passive Energy Designs

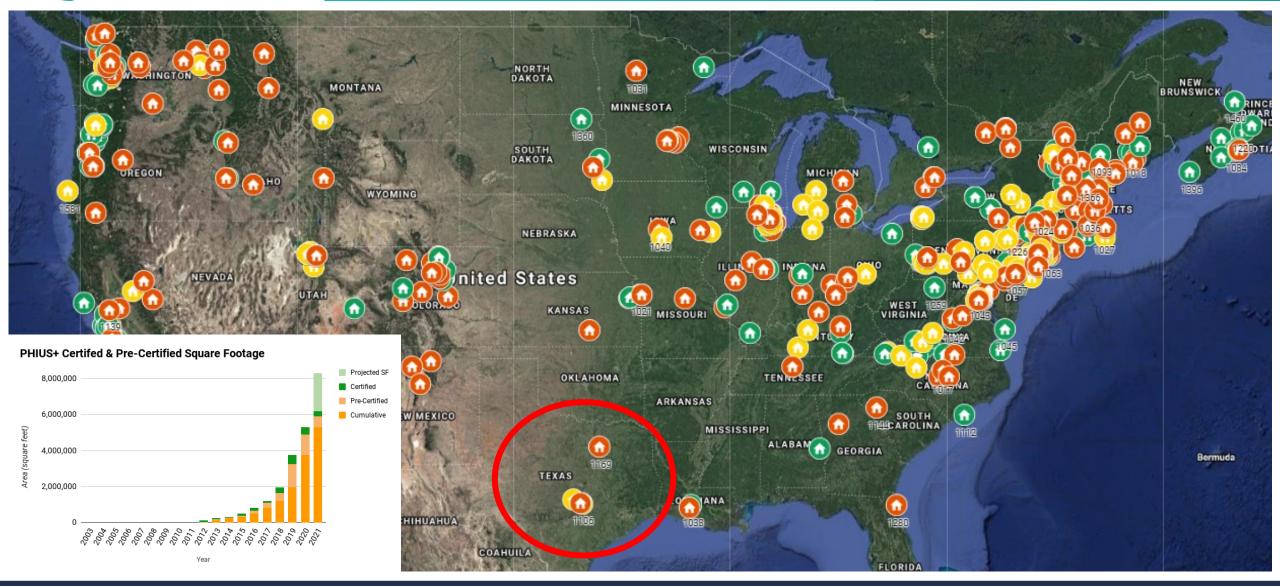
Stefan Goebel, M.Eng., CPHC

President Ecotech Consulting & VP Phius Houston

- **5 Years CPHC**
- LEED Green Associate
- Building Science Principle
 - Lecturer for Construction Technology

Ryan Abendroth, M.Arch, CPHC Principle at Passive Energy Designs, LLC


- 12 Years CPHC & Passive Buildings
 Professor of Architecture
 - Phius Trainer & Technical Committee
 Member


PASSIVE ENERGY DESIGNS

Ophius PhiusCon 2023 - Houston

Ophius Certification Growth

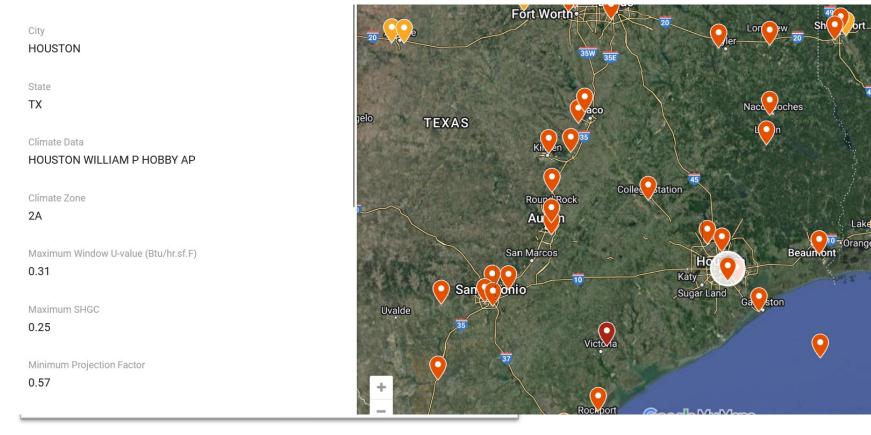
- Climate specific Phius standard launched in 2015
- Final Certified
 - Theresa Passive House; Single-Family Addition 2A,
 - Casa La Vista, Single-Family New Construction 2A
 - Blaise House, Single-Family Retrofit 2A,
- Design Certified
 - Abbate House, Single-Family New Construction 2A,
- Registered
 - Lareina Guesthouse, Single-Family New Construction 2A,
 - 1118 W 7th, Single-Family New Construction 2A,
- Application: 3 Projects

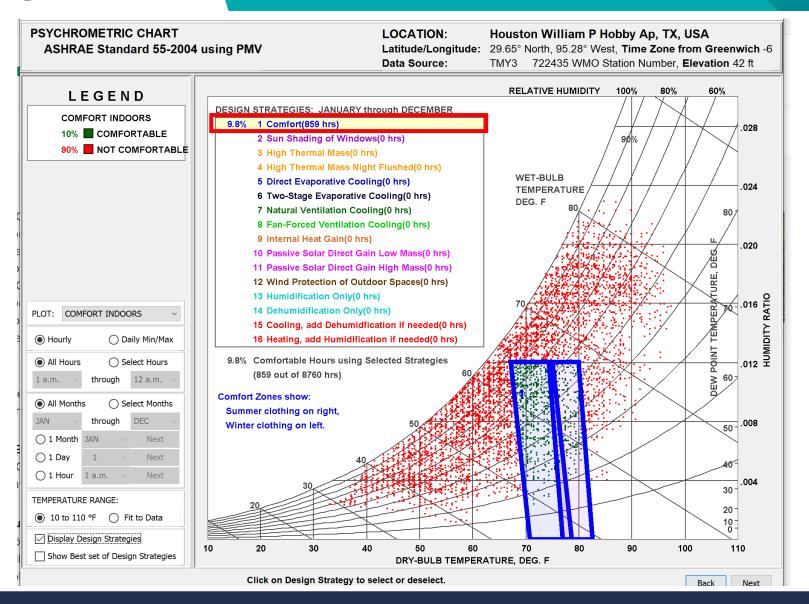

2218 sq. ft. (Austin) 2990 sq. ft. (Spicewood) 1473 sq. ft. (Austin)

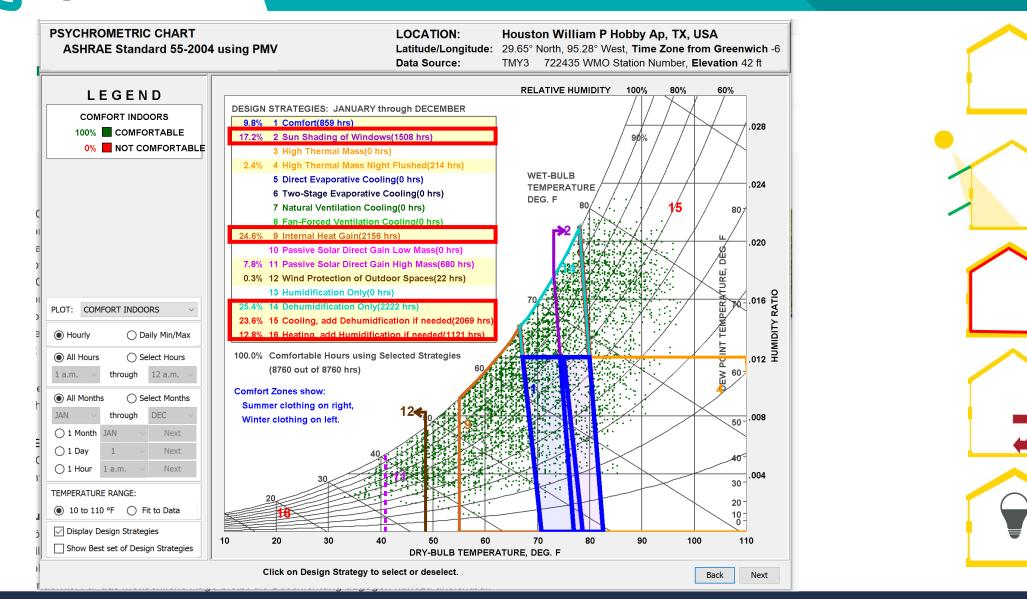
1130 sq. ft. (Austin)

1033 sq. ft. (Austin) **5000 sq. ft.** (Austin)

• Texas

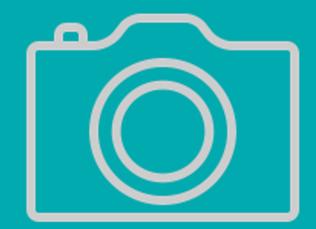



Ophius Texas – Fact Sheet


Cities	US City Size Rank
Austin	11
Houston	4
Dallas	9
San Antonio	7
US Average	-

• Houston, TX

LOUISIA

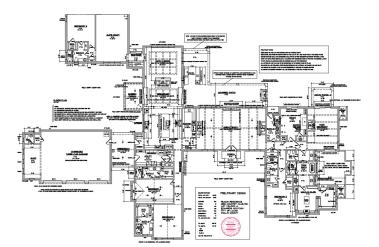


Phius CORE Prescriptive 2021 Snapshot

	ta in teal cells	Input or select data in teal cells			
	State	NEW YORK V		TEXAS v	
	City	NEW YORK LAG	JARDIA ARPT -	HOU STON WILLIA	
	ASHRAE (169-2021) Climate	4A		2A	
()	Zone iCFA* (ft ²)	250	D	2500	
	Number of Bedrooms*	4		4	
	Number of Stories	2		2	
4 Conserved		*per dwelling unit		*per dwelling unit	
1 General			1		1
1.1.2 iCFA divided by Number of Bedrooms	Maximum Limit	900	ft ²	900	ft ²
(Calculated Value based on Inputs)	OK, Meets Limit	625	ft ²	625	ft ²
3 Compactness					
3.1.1 Envelope Area	Maximum	6946	ft ²	6946	ft ²
(Maximum Envelope to Floor Area Ratio)		2.78		2.78	
4 Solar Protection					
4.1.1 Whole Window SHGC	Maximum	0.40		0.25	
4.4.1 Projection Factor for Fixed Overhangs	Minimum	NR		0.57	
5 Thermal Enclosure					
5.1.1a Fenestration / Openings	Maximum Whole U-Value	0.20	(BTU/h.ft ² .°F)	0.31	(BTU/h.ft ² .°F)
5.1.1b Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	36	(ft ² .°F.h/BTU)	23	(ft ² .°F.h/BTU)
5.1.1c Roofs / Ceilings	Minimum Effective R-Value	67	(ft ² .°F.h/BTU)	53	(ft ² .°F.h/BTU)
5.1.1d Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	17	(ft ² .°F.h/BTU)	8	(ft ² .°F.h/BTU)
5.1.1e Spaces & Pier and Beam Floors	Minimum Effective R-Value	22	(ft ² .°F.h/BTU)	13	(ft ² .°F.h/BTU)
6 Moisture Risk Limitation					
6.2.1 Fenestration Condensation Resistance	Minimum	60%		65%	
7 Mechanical Ventilation					
7.2.1 Sensible Recovery Efficiency, Heating Mode	Minimum	76%		NR	
7.2.2 Total Recovery Efficiency Cooling Mode	Minimum	50%		60%	
7.2.5 Total Length of Fresh Air Ducts to Outside	Maximum	28	ft	28	ft
8 Mechanical Systems					
Select System Type					
8.2.1 Air Source Heat Pump v	Minimum COP @ 5F Minimum SEER	1.8 15.0		9.6 18.0	

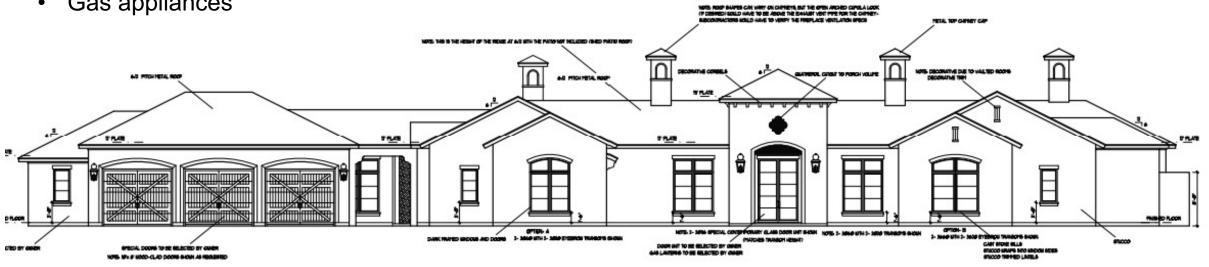
Phius CORE Prescriptive **Snapshot**

(www.phius.org)



© Phius 2021

(phius Texas Building Typologies


"Everything is bigger in Texas"

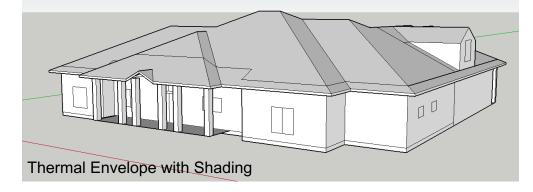
- Single Family 1 Story
- ~ 6000 sq ft
- 5 bed/7 bath
- 3 car garage ٠
- Large envelope size and multiple wings
- Distributed nature of hot water use •
- Combustion safety 5 fireplaces
- Gas appliances ٠

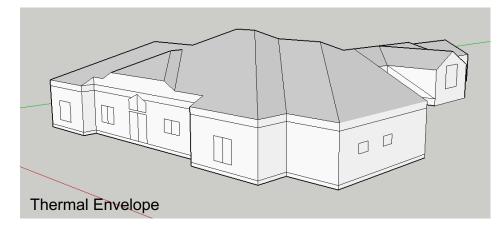
While not universal, the two case studies in this presentation have the following in common:

> Slab on Grade **Conditioned Attic Brick Veneer**

Ophius Positive Impact Homes

- Single Family 1 story
- Sqft: approx. 2,500
- Project Status: Construction Documents
- Positive Impact Homes


POSITIVE IMPACT HOMES FOR VETERANS BATTLING PTSD & SPECIAL NEEDS



Images by Stella Maris Architecture

Ophius Positive Impact Homes

The thermal envelope area is not overly large in plan, but there is a conditioned space over the attic that greatly adds to the overall envelope to iCFA ratio.

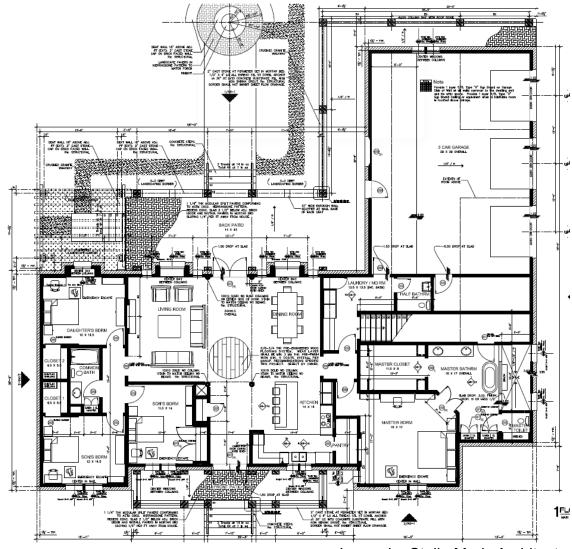
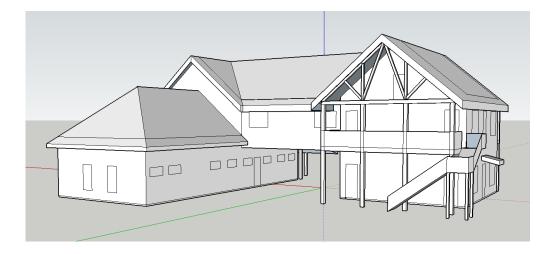
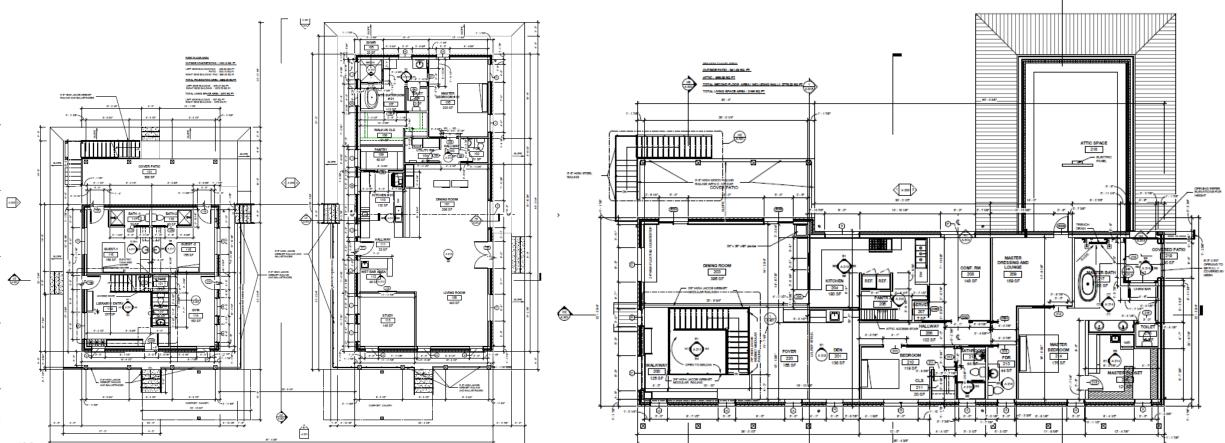



Image by Stella Maris Architecture

Ophius Palm Street Development


- Two Unit Residence
- Sqft: Unit 1 1,950; Unit 2 3,600
- Project Status: Construction Documents
- SunRoof USA PV System offering 24.96 kWp (29.6k lsb/yr CO2 reduction)
- Emphasis on carbon neutral, energy positive construction practices
- Bridge above easement that connects the two residences
- Two additional 1st floor bedrooms w/ exterior entrances

Ophius Palm Street Development

1st Floor

2nd Floor

Images courtesy of Mint Homes / Raj Development Corporation

Ophius Phius 2021 – Prescriptive

Houston

	5	Thermal Enclosure	
4	5.1.1a	Fenestration / Openings	Maximum Whole U-Valu
4	5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Valu
4	5.1.1c	Roofs / Ceilings	Minimum Effective R-Valu
ł	5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Valu
4	5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Valu

Maximum Whole U-Value	0.31	(BTU/h.ft ² .°F)
Minimum Effective R-Value	23	(ft ² .°F.h/BTU)
Minimum Effective R-Value	53	(ft ² .°F.h/BTU)
Minimum Effective R-Value	8	(ft ² .°F.h/BTU)
Minimum Effective R-Value	13	(ft ² .°F.h/BTU)

Austin

5	Thermal Enclosure			
5.1	1a Fenestration / Openings	Maximum Whole U-Value	0.26	(BTU/h.ft ² .°F)
5.1	1b Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	25	(ft ² .°F.h/BTU)
5.1	1c Roofs / Ceilings	Minimum Effective R-Value	55	(ft ² .°F.h/BTU)
5.1	1d Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	9	(ft ² .°F.h/BTU)
5.1	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	14	(ft ² .°F.h/BTU)

Dallas

5	Thermal Enclosure			
5.1.1a	Fenestration / Openings	Maximum Whole U-Value	0.24	(BTU/h.ft ² .°F)
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	26	(ft ² .°F.h/BTU)
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	56	(ft ² .°F.h/BTU)
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	9	(ft ² .°F.h/BTU)
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	14	(ft ² .°F.h/BTU)

San Antonio

5	Thermal Enclosure			
5.1.1a	Fenestration / Openings	Maximum Whole U-Value	0.28	(BTU/h.ft ² .°F)
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	24	(ft ² .°F.h/BTU)
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	54	(ft ² .°F.h/BTU)
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	8	(ft ² .°F.h/BTU)
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	13	(ft ² .°F.h/BTU)

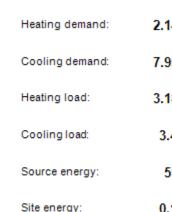
Ophius Positive Impact Homes: Criteria

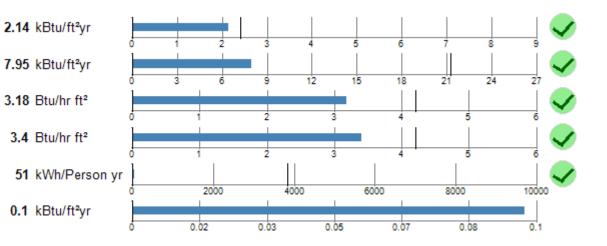
Phius 2021 Performance Criteria Calculator v3.2				
UNITS:	IMPERIAL (IP)			
BUILDING FUNCTION:	RESIDENTIAL			
PROJECT TYPE:	NEW C			
STATE/ PROVINCE	TEXAS			
CITY	HOUSTON WILLIAM P HC			
Envelope Area (ft²)		12,905.6		
iCFA (ft²)		3,200.0		
ICFA (IF)		·		
Dwelling Units (Count)		<u>þ</u>		
Total Bedrooms (Count)		4		
Space Conditioning	g Criteria			
Annual Heating Demand	2.8	kBtu/ft²yr		
Annual Cooling Demand	19.3	kBtu/ft²yr		
Peak Heating Load	3.2	Btu/ft²hr		
Peak Cooling Load	4.2	Btu/ft²hr		
Source Energy C	Criteria			
Phius CORE	5000	kWh/person.yr		
Phius ZERO	0	kWh/person.yr		

PHIUS+ 2018 Space Conditioning Criteria Calculator v2					
METHOD: UNITS:			JLATOR RIAL (IP)	~	
STATE / PROVINCE			EXAS	•	
CITY		HOUSTON W	ILLIAM P HOBI	B) 🗸	
Envelope Area (ft²) / iCFA (ft²)	4.03	or enter here:	4.03		
iCFA (ft²) / person	640	or enter here:	640		

*Calculator method is used for official certification targets

Space Conditioning Criteria				
Annual Heating Demand	3.4	kBTU/ft²yr		
Annual Cooling Demand	24.3	kBTU/ft²yr		
Peak Heating Load	3.1	BTU/ft²hr		
Peak Cooling Load	5.7	BTU/ft²hr		


Typed entry will override sliding scale.


The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Ophius Positive Impact Homes: Criteria vs Results

Phius 2021 Performance Criteria Calculator v3.2				
UNITS:	IMPERIAL (IP)			
BUILDING FUNCTION:	RESIDENTIAL			
PROJECT TYPE:	NEW CONSTRUCTIO			
STATE/ PROVINCE		TEXAS ~		
CITY	HOUST	on William P HC 🗸		
Envelope Area (ft ²)	12,905.6			
iCFA (ft²)	3,200.0			
Dwelling Units (Count)		þ		
Total Bedrooms (Count)		4		
Space Conditioning	g Criteria			
Annual Heating Demand	2.8	kBtu/ft²yr		
Annual Cooling Demand	19.3	kBtu/ft²yr		
Peak Heating Load	3.2	Btu/ft²hr		
Peak Cooling Load	4.2	Btu/ft²hr		
Source Energy C	riteria			
Phius CORE	5000	kWh/person.yr		
Phius ZERO	0	kWh/person.yr		

Ophius Palm Street: Criteria

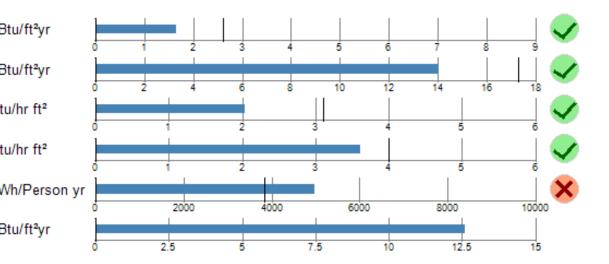
Phius 2021 Performance Criteria Calculator v3.2				
UNITS:	IMPERIAL (IP)			
BUILDING FUNCTION:	RESIDENTIAL ~			
PROJECT TYPE:	NEW C			
STATE/ PROVINCE		TEXAS 🗸		
CITY	HOUSTON WILLIAM P HC			
Envelope Area (ft²)		16,032.0		
iCFA (ft²)	5,254.0			
Dwelling Units (Count)		2		
Total Bedrooms (Count)		5		
Space Conditionin	g Criteria			
Annual Heating Demand	2.7	kBtu/ft²yr		
Annual Cooling Demand	19.1	kBtu/ft²yr		
Peak Heating Load	3.1	Btu/ft ² hr		
Peak Cooling Load	4.1	Btu/ft ² hr		
Source Energy C	Criteria			
Phius CORE	5600	kWh/person.yr		
Phius ZERO	0	kWh/person.yr		

phius 2021 Performance Criteria Calculator v2					
UNITS:	IMF	PERIAL (IP)	~		
BUILDING FUNCTION:	RE	SIDENTIAL	~		
PROJECT TYPE:	NEW C	ONSTRUCTIO	ON V		
STATE/ PROVINCE		TEXAS			
CITY	HOUST	HOUSTON WILLIAM P HC -			
Envelope Area (ft²)		16,032			
iCFA (ft²)		5,254			
Dwelling Units (Count)		2			
Total Bedrooms (Count)		5			
Space Conditioni	ng Criteria				
Annual Heating Demand	2.6	kBtu/ft²y	/r		
Annual Cooling Demand	17.3	kBtu/ft²y	/r		
Peak Heating Load	3.1	Btu/ft ² h	r		
Peak Cooling Load	4.0	Btu/ft ² h	r		
Source Energy	Criteria				
phius CORE	5612	kWh/perso	n.yr		
phius ZERO	0	kWh/perso	n.yr		

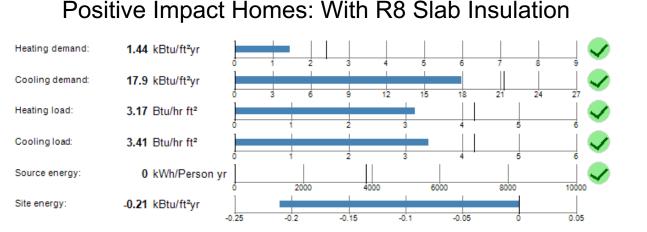
PHIUS+ 2018 Space Conditioning Criteria Calculator v2							
METHOD:		CALCUI	LATOR	•			
UNITS:		IMPERI	AL (IP)	~			
STATE / PROVINCE		TEX	AS	•			
CITY		HOUSTON WILL	LIAM P HOBB	~			
Envelope Area (ft²) / iCFA (ft²)	3.05	or enter here:	3.05				
iCFA (ft²) / person	751	or enter here:	751				
*Calculator method is used for official c	*Calculator method is used for official certification targets.						

Space Conditioning Criteria				
Annual Heating Demand	3.3	kBTU/ft²yr		
Annual Cooling Demand	23.8	kBTU/ft²yr		
Peak Heating Load	3.0	BTU/ft²hr		
Peak Cooling Load	5.6	BTU/ft²hr		

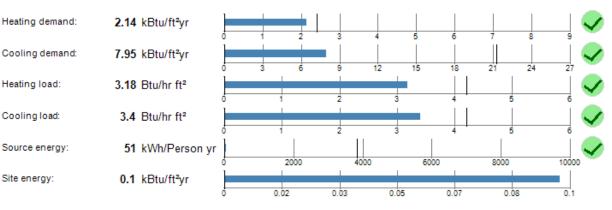
Typed entry will override sliding scale.

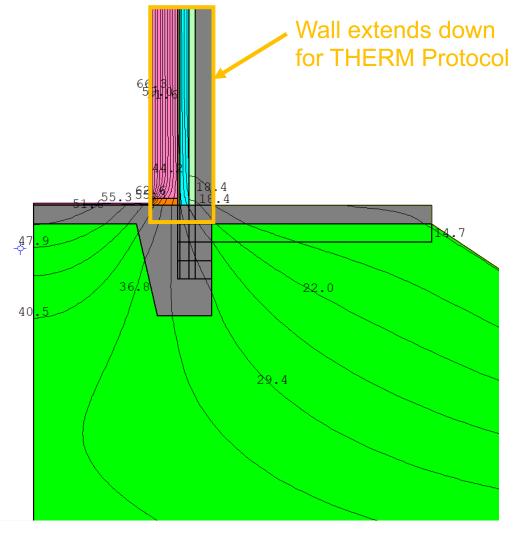

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Ophius Palm Street: Criteria vs Results


Phius 2021 Performance Criteria Calculator v3.2					
UNITS:	IMP	ERIAL (IP) 🛛 🗸			
BUILDING FUNCTION:	RES	SIDENTIAL ~			
PROJECT TYPE:	NEW C				
STATE/ PROVINCE	TEXAS				
CITY	HOUSTON WILLIAM P HC				
Envelope Area (ft²)	[16.032.0			
	16,032.0				
iCFA (ft²)		5,254.0			
Dwelling Units (Count)		2			
Total Bedrooms (Count)		5			
Space Conditioning) Criteria				
Annual Heating Demand	2.7	kBtu/ft²yr			
Annual Cooling Demand	19.1	kBtu/ft²yr			
Peak Heating Load	3.1	Btu/ft ² hr			
Peak Cooling Load	4.1	Btu/ft²hr			
Source Energy C	riteria				
Phius CORE	5600	kWh/person.yr			
Phius ZERO	0	kWh/person.yr			

Heating demand:	1.65 kB
Cooling demand:	14.04 kB
Heating load:	2.04 Btu
Cooling load:	3.61 Btu
Source energy:	4,991 kW
Site energy:	12.6 kB





- In many cases, insulation continuous under the slab is not required or even recommended.
- There are some cases where approximately R-8 would provide meaningful results.
 See Phius Prescriptive Requirements
- Situations where this is the case:
 - 1. Where the building has lower internal and solar gains (benefits less from free ground contact)
 - 2. In climates where the ground temperature is lower
 - *For example: Houston vs Dallas

Positive Impact Homes: Without Slab Insulation

WHAT? / WHY!

- Uninsulated slabs have very little thermal resistance.
- The overlap of the wall and slab at the corner creates what is typically called double counting" of the heat loss, but in this case, it replaces concrete with additional insulation.

		U	dT	L	ULdT	error
2D model		(btu/hr.sf.F)	(F)	(in)	[btu/hr.ft]	(%)
	Exterior	0.016	54	468.27	33.72	3.36%
	Interior	0.1029	54	73.00	33.80	3.36%
Component		U	dT	L	ULdT	error
		(btu/hr.sf.F)	(F)	(in)	[btu/hr.ft]	(%)
Component A	Exterior	0.0282	54	52.00	6.60	0.00%
Wall	Interior	0.028	54.00	52.00	6.60	0.00%
Component B	Exterior	0.5823	27	39	51.10	1.36%
Slab	Interior	0.5823	27.00	39.00	51.10	1.36%
Psi		PsidT	dT	Psi	Psi for	WUFI
		(btu/hr.ft)	(F)	(btu/hr.ft.F)	(btu/h	r.ft.F)
	Exterior	-23.98	54.00	-0.444	-0.4	1/12
	Interior	-23.89	54.00	-0.442	-0.4	43

PHIUS recommends against taking negative thermal bridges in the design phase. See Thermal Bridges section in Certification Guidebook.

No Slab Edge Insulation

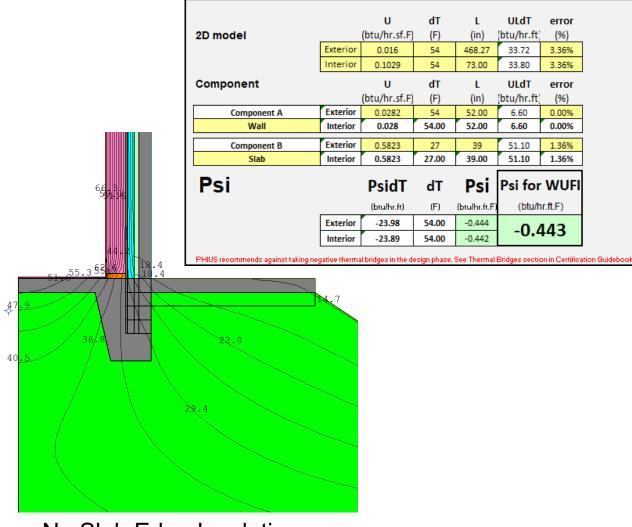
error

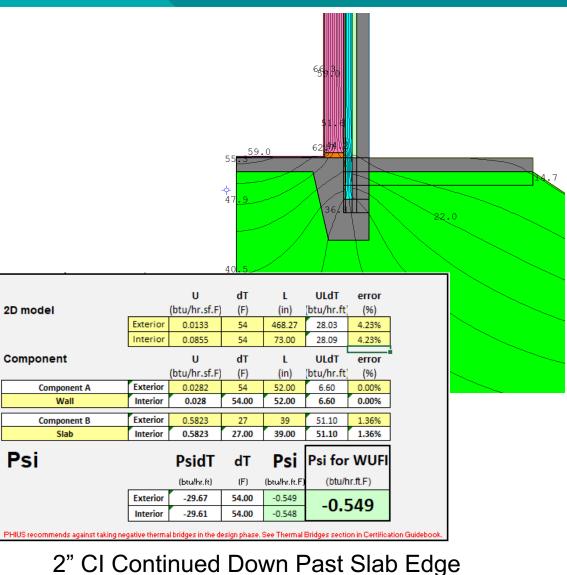
(%)

3.36%

3.36%

error


(%)


0.00%

0.00%

1.36%

1.36%

No Slab Edge Insulation

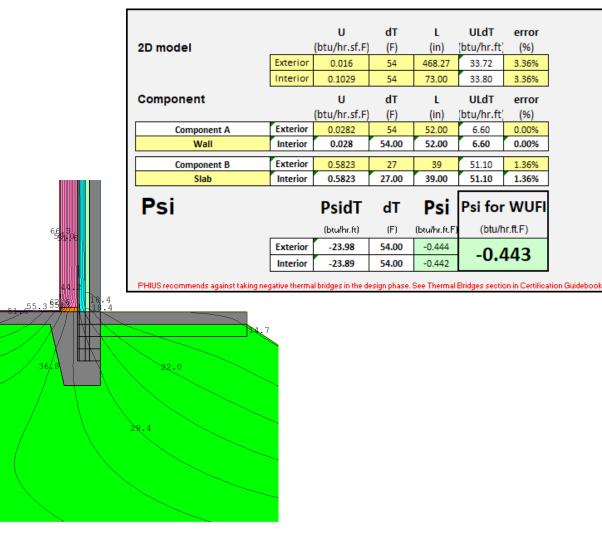
error

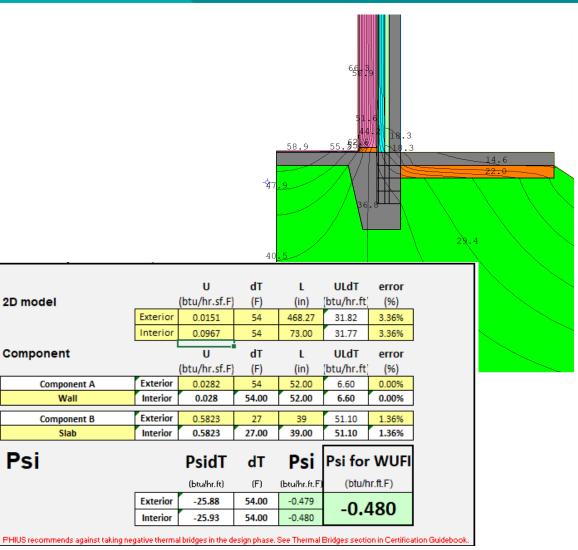
(%)

3.36%

3.36%

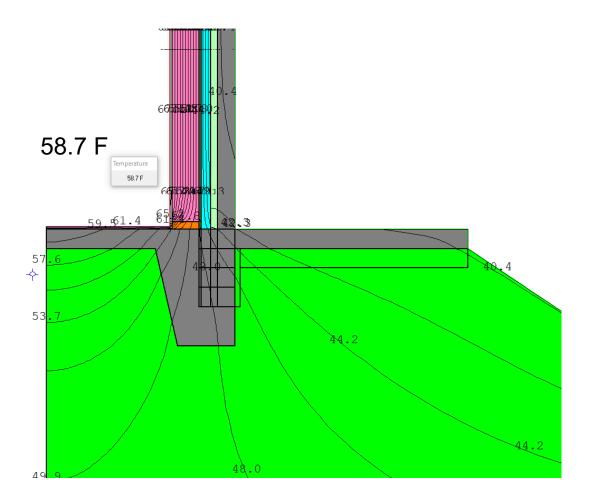
error

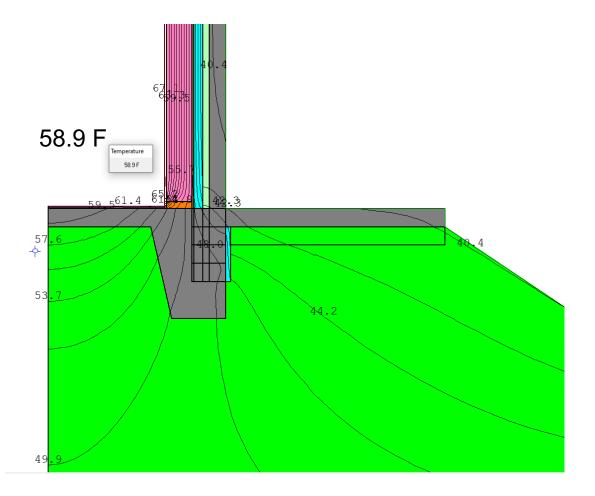

(%)


0.00%

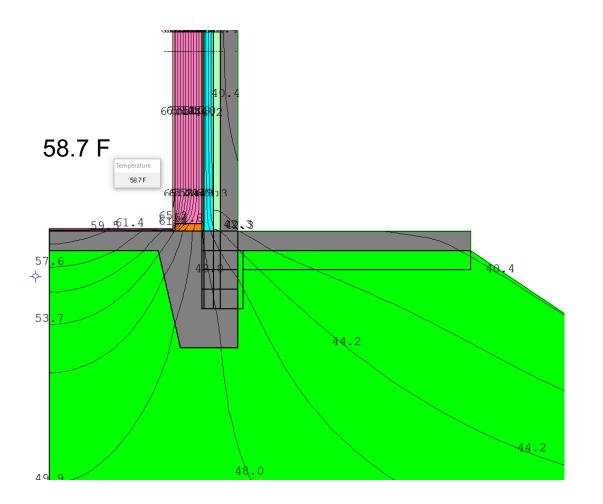
0.00%

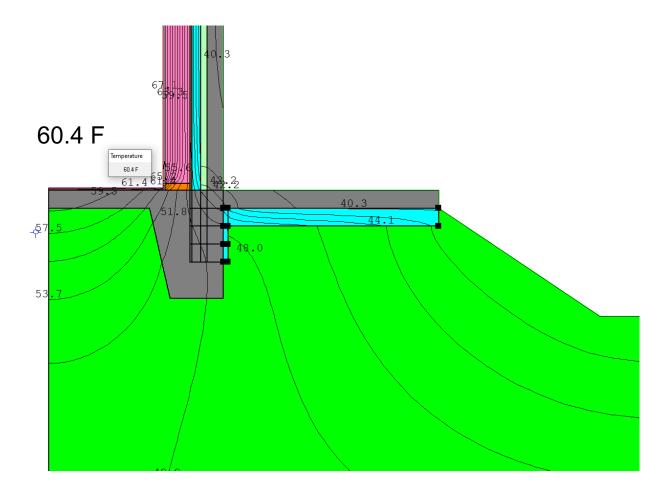
1.36%


1.36%



No Slab Edge Insulation


Glavel Slab Edge Insulation



No Slab Edge Insulation

1" Slab Edge Insulation

No Slab Edge Insulation

4" of R4 EPS Adjacent to Slab Edge (1" Vertical R4 EPS)

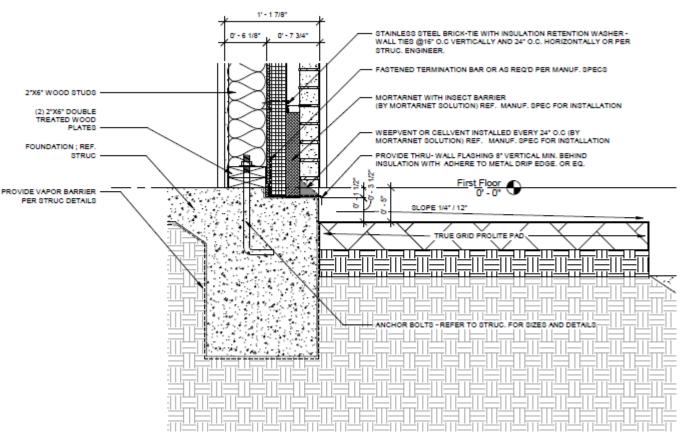
What about WUFI??????

The model was set to have a perimeter insulation depth of 8", a thickness of 4", and use R4/in material.

When updated to the following, the model was set to have a perimeter insulation depth of 2'-8", a thickness of 8", and use R4/in material the results did not substantially change.

<u>Original:</u>		2' Perimete	er @ 8" thick:
Heating demand:	2.14 kBtu/ft ² yr	Heating demand:	2.1 kBtu/ft²yr
Cooling demand:	7.95 kBtu/ft²yr	Cooling demand:	7.92 kBtu/ft²yr
Heating load:	3.18 Btu/hr ft ²	Heating load:	3.13 Btu/hr ft ²
Cooling load:	3.4 Btu/hr ft ²	Cooling load:	3.37 Btu/hr ft ²
Source energy:	51 kWh/Person yr	Source energy:	49 kWh/Person yr
Site energy:	0.1 kBtu/ft²yr	Site energy:	0.09 kBtu/ft²yr

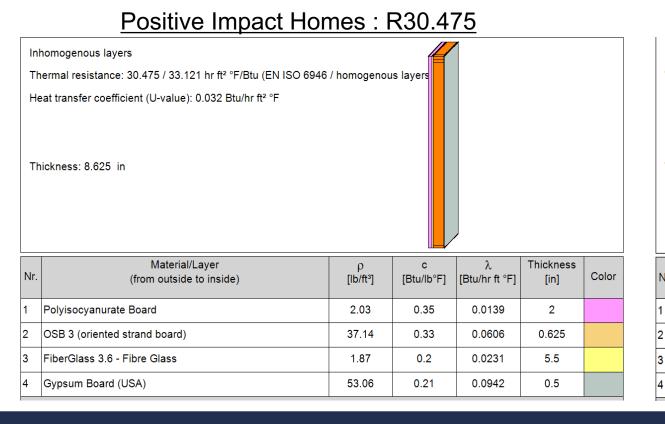
Foundation interfaces	Foundation interfaces			
1 Slab Edge				New
				X Delete
				»
Settings: Foundation interface	e 1, Slab Edge			
Setting D	etect automatically			~
Type S	lab on grade			~
Parameters				
Setting			Setting	Value
Floor slab area [ft²]		User defined		3101.23
U-Value of slab on grade [Btu	ı/hr ft² °F]	Detect automatic	cally	0.72
Floor slab perimeter (P) [ft]		User defined		265.67
Additional parameters				
Position of the perimeter insul	ation	Vertical		
Perimeter insulation width/dep	oth [ft]	67		
Thickness of perimeter insulat	tion [in]	4		
Conductivity perimeter insulat	ion [Btu/hr ft °F]	0.02083		
Optional data (if not defined d	efault value will be o	calculated)		
Phase shift months [months]				
Harmonic fraction [Btu/hr F]				


Ophius Slab Foundations

Post Tensioned Slabs

- Palm Street is using a post tensioned slab.
- This means the slab edge needs to be exposed to enable the post tensioning.
- This causes constructability issues in regards to perimeter insulation and especially in the ability to use rigid foam as formwork.

Watering the Footing/Foundation


- Building movement and foundation issues caused by soil movement
- Soil expansion and contraction due to variance in moisture levels around the foundation.

Palm Street Detail: Courtesy of Mint Homes

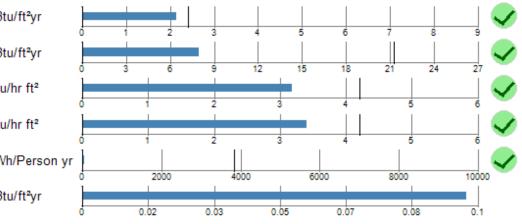
Ophius Exterior Wall Approaches

- Target R-Values lead to "No Exotic Materials or Techniques Required"
- "4 City" range for the Prescriptive Path is: R23 R26
- Framing conservatively (accurately) modeled with a double top plate @ 16" o.c.

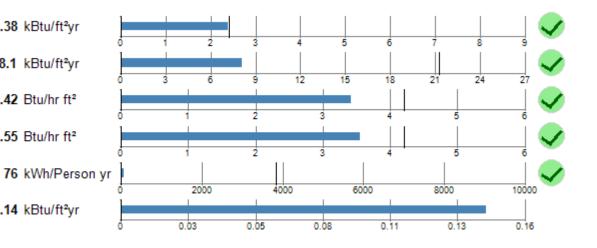
Palm Street: R 29.684

Inh	nhomogenous layers							
Th	Thermal resistance: 29.864 / 32.935 hr ft² °F/Btu (EN ISO 6946 / homogenous laye							
He	leat transfer coefficient (U-value): 0.032 Btu/hr ft² °F							
Th	ckness: 9.125 in							
lr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Color		
	ROXUL FacadeRock	8.43	0.25	0.022	2.5			
	Plywood (USA)	29.34	0.45	0.0485	0.5			
	Roxul ComfortBatt	2.25	0.2	0.0208	5.5			
	Gypsum Board (USA)	53.06	0.21	0.0942	0.625			

Ophius Exterior Wall Approaches


Positive Impact Homes: R30.475

Tł He	Inhomogenous layers Thermal resistance: 30.475 / 33.121 hr ft² °F/Btu (EN ISO 6946 / homogenous layers Heat transfer coefficient (U-value): 0.032 Btu/hr ft² °F Thickness: 8.625 in					
Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Colo
1	Polyisocyanurate Board	2.03	0.35	0.0139	2	
2	OSB 3 (oriented strand board)	37.14	0.33	0.0606	0.625	
3	FiberGlass 3.6 - Fibre Glass	1.87	0.2	0.0231	5.5	
4	Gypsum Board (USA)	53.06	0.21	0.0942	0.5	


Positive Impact Homes: R 24.358

	Inhomogenous layers					
	Thermal resistance: 24.358 / 27.111 hr ft² °F/Btu (EN ISO 694	16 / homogenou	is layers			
	Heat transfer coefficient (U-value): 0.039 Btu/hr ft² °F					
	Thickness: 7.625 in					
N	Material/Layer Ir. (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Colo
1	Polyisocyanurate Board	2.03	0.35	0.0139	1	
2	OSB 3 (oriented strand board)	37.14	0.33	0.0606	0.625	
3	FiberGlass 3.6 - Fibre Glass	1.87	0.2	0.0231	5.5	
4	Gypsum Board (USA)	53.06	0.21	0.0942	0.5	

Ophius Exterior Wall Approaches

Cost:

- 2x6 Framing is standard practice.
- Sheathing is standard as well
- Thin layers of CI are not standard, but fairly easy to accomplish
- 2" of foam can work well with almost all cladding materials
- Difference in cost between 2" and 1" is reasonable and can give advantages to meeting Phius Criteria (See previous slides)

Foam/No Foam

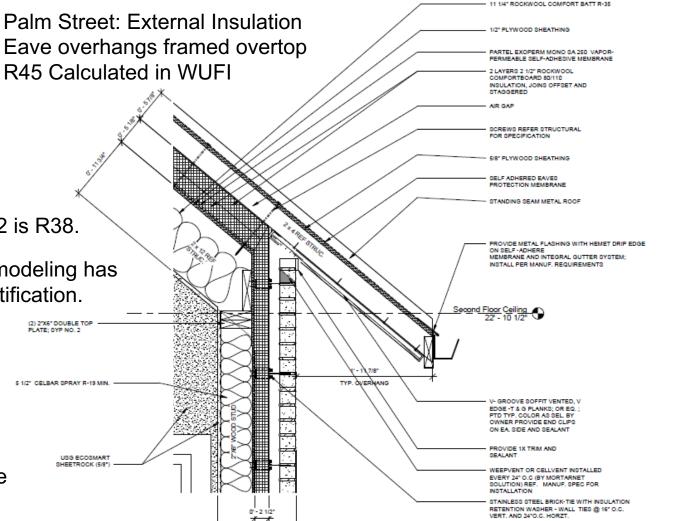
- Embodied Energy and Carbon come into play.
- Palm Street is based on a foam free assembly using rockwool
- Positive Impact Homes uses Polyisocyanurate foam
- Note: polyisocyanurate works very well in warmer climates
- Rockwool requires a thicker layer to get to equivalent R-values than some foam products. All in one panel solutions:
- ZIP R Sheathing can be an excellent solution, the R9 panel would generally meet the requirements for Phius Certification (with 2x6 insulated framing)
- EPS "nailbase" panels are also an option and have roof applications (more on this soon)

(phius Roof Approaches

Positive Impact Homes: Insulation under the roof deck Spray polyurethane foam, AeroBarrier **R40** Estimated

CLASS I VAPOR RETARDER - 1 PERM OR LESS

ON PLYWD SHEATHING. NO RADIANT BARRIER.


The IECC Roof Insulation requirements for Climate Zone 2 is R38.

This is also very close to what modeling has shown is required for Phius Certification.

> (2) 2"X5" DOUBLE TO PLATE: SYP NO 2

Note: The Phius Prescriptive Path requires approx. R55

CLOSED EAVE

0' - 6 5/8"

0'-7 1/4 1'-17/8

Performance criteria for windows in a predominately cooling climate are highly varied. Like in colder climates, the best thing to do is to have excellent shading control for passive solar gain in the winter and complete shading in the summer.

U-values in the Prescriptive Path vary from: U 0.24 (Dallas) to U 0.31 (Houston) The WUFI model results shown to this point vary from U 0.2 to U 0.25

Glazing specifications is still a balance as it gets cold enough to warrant some passive solar gain, but for the majority of the year strategies to limit gain is best.

Limit West Windows North Windows

SHGC vs U-value vs Shading

The better shading you have, the higher SHGC would be possible. SHGC is VERY Important. In testing, a SHGC reduction from .3 to .25 allowed the window to go from U .2 to U .5 and achieve the same cooling demand. Heating Performance suffered in the above example.

Triple Pane windows for acoustics, better performance, etc. Watch code requirements for SHGC (NFRC vs Center of Glass)

Ophius Phius 2018 (+V2) vs Phius 2021

Phius 2021 Performance Criteria Calculator v3.2						
UNITS:	IMP	ERIAL (IP) 🛛 🗸				
BUILDING FUNCTION:	RES	SIDENTIAL -				
PROJECT TYPE:	NEW C					
STATE/ PROVINCE		TEXAS 🗸				
CITY	HOUST	on William P HC 🗸				
Envelope Area (ft²)		16,032.0				
iCFA (ft²)		5,254.0				
Dwelling Units (Count)		2				
Total Bedrooms (Count)		5				
Space Conditioni	ng Criteria					
Annual Heating Demand	2.7	kBtu/ft²yr				
Annual Cooling Demand	19.1	kBtu/ft²yr				
Peak Heating Load	3.1	Btu/ft ² hr				
Peak Cooling Load	4.1	Btu/ft ² hr				
Source Energy	Criteria					
Phius CORE	5600	kWh/person.yr				
Phius ZERO	0	kWh/person.yr				

phius 2021 Performance Criteria Calculator v2				
UNITS:	IMP	IMPERIAL (IP) ~		
BUILDING FUNCTION:	RE	RESIDENTIAL ~		
PROJECT TYPE:	NEW C			
STATE/ PROVINCE		TEXAS ~		
CITY	HOUST	HOUSTON WILLIAM P HC -		
Envelope Area (ft ²)		16,032		
iCFA (ft²)		5,254		
Dwelling Units (Count)		2		
Total Bedrooms (Count)		5		
Space Condition	ing Criteria			
Annual Heating Demand	2.6	kBtu/ft²yr		
Annual Cooling Demand	17.3	kBtu/ft²yr		
Peak Heating Load	3.1	Btu/ft ² hr		
Peak Cooling Load	4.0	4.0 Btu/ft ² hr		
Source Energy	/ Criteria			
phius CORE	5612	kWh/person.yr		
phius ZERO	0	0 kWh/person.yr		

PHIUS+ 2018 Space Conditioning Criteria Calculator v2				
METHOD:		CALCULATOR ~		~
UNITS:		IMPERIAL (IP)		~
STATE / PROVINCE		TI	EXAS	~
CITY		HOUSTON WILLIAM P HOBB		B) 🗸
Envelope Area (ft²) / iCFA (ft²)	3.05	or enter here:	3.05	
iCFA (ft²) / person	751	or enter here:	751	
*Calculator method is used for official of	ertification ta	raets		

Calculator method is used for official certification targets.

Space Conditioning	g Criteria	
Annual Heating Demand	3.3	kBTU/ft²yr
Annual Cooling Demand	23.8	kBTU/ft²yr
Peak Heating Load	3.0	BTU/ft ² hr
Peak Cooling Load	5.6	BTU/ft ² hr

Typed entry will override sliding scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Cooling has tightened significantly while heating has tightened marginally. Source Energy is just different!

Ophius Comfort in Cooling Climates

- With a high degree of certainty, I will state that Point Source Cooling is NOT EFFECTIVE (while point source heating often is – or can be)
- Distribution of cooling energy (and probably heating energy too) should be ducted to each room Central AHU not necessarily required.

Ducted mini-splits with short runs located in conditioned attic may be sufficient pending overall design constraints.

Questions - that need some more clarifying, discussion, or research:

- Impact of glass surface temperature for thermal comfort "Mean Radiant Temperature"
- Dedicated dehumidification required?
- Effects of air leakage, stratification and air movement.

Ceiling fans being planned for in both projects.

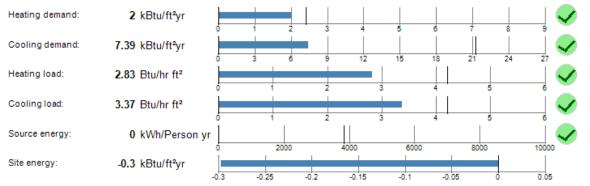
Baseline Target

6000

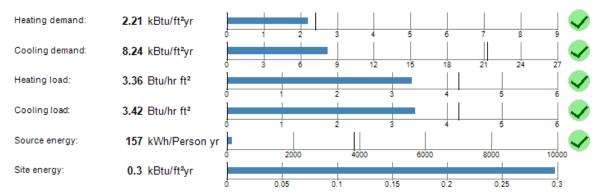
0.07

0.05

24

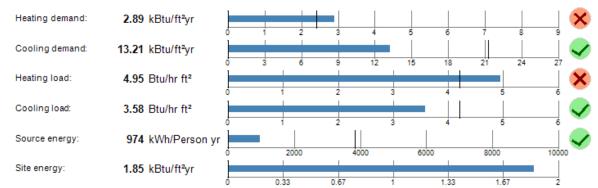

10000

0.1


8000

0.08

0.06 CFM50 / .97 ACH



O.05 CFM50 / .81 ACH Heating demand: 2.14 kBtu/ft²yr Cooling demand: 7.95 kBtu/ft²yr Heating load: 3.18 Btu/hr ft² Cooling load: 3.4 Btu/hr ft² Source energy: 51 kWh/Person yr

0.15 CFM50 / 2.42 ACH

0.1 kBtu/ft²vr

Site energy:

2000

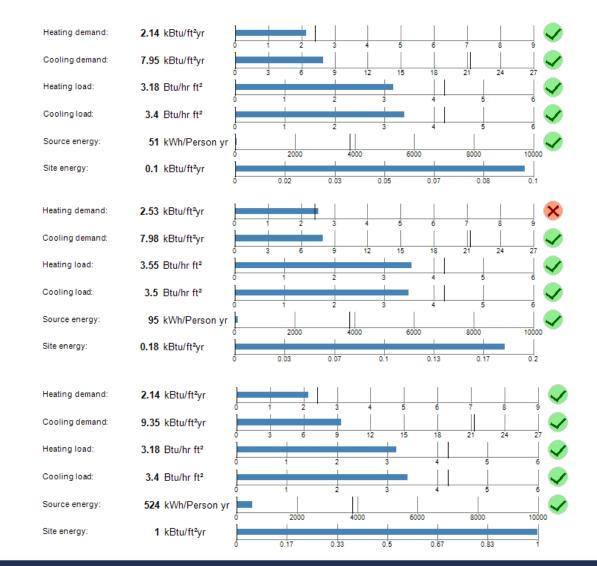
0.02

4000

0.03

Baseline:

Sensible recovery efficiency [-]	.8
Humidity recovery efficiency [-]	.68
Electric efficiency [W/cfm]	.5


Lower Sensible Recovery:

Sensible recovery efficiency [-]	.6
Humidity recovery efficiency [-]	.68
Electric efficiency [W/cfm]	.5

Lower Humidity Recovery:

Sensible recovery efficiency [-]	.8
Humidity recovery efficiency [-]	.5
Electric efficiency [W/cfm]	.5

Zero Humidity Recovery = Cooling Demand @ 13.4 kBtu/ft²yr!

Large buildings and slab on grade construction leads to longer DHW piping runs and wait times for hot water (ZERH requirement can be challenging).

> Preference to: On-demand recirculation systems Instantaneous water heaters for specific locations

Hot water heaters sometimes located in attics to save space on main floor

Heat Pump Water Heater inside vs Split system:

Non Split HPWH provide free cooling inside the project. This is a big advantage compared to the split system. The cost is substantially less as well and easier to replace.

Acoustics and cold air distribution / location of the HPWH are a concern.

System Requirements:

Heating, Cooling, Dehumidification

Both projects plan on using Mini-Split Heat Pump technologies as the primary heating and cooling system.

Dehumidification is being specified using a dedicated dehumidifier and duct system

Positive Impact Homes is specifying an additional air filtration system in addition to the filters on the rest of the mechanical equipment

Electrification

Both projects are pursuing full electrification, but there are some issues.

Backup Energy

A main drawback to full electrification is the requirement for backup and resiliency. This is especially a concern regarding recent events with grid outages during frosts and hurricane season.

For this reason, Positive Impact Homes has been specifying Natural Gas supply or Propane Tank for a backup generator.

Ophius System Considerations

PV Potential:

Houston: 20deg Tilt		Houston: 40deg Tilt		
Houston Tx » Change Location	English HELP FEEDBACK Español	English Español Español		
	RESULTS	RESULTS		
RESULTS	14,113 kWh/Year* m 13,653 to 14,493 kWh per year near this location. Click HERE for more information.	13,534 to 14,366 kWh per year near this location. Click HERE for more information.		
Month	n AC Energy (kWh)	AC Energy (kWh)		
January	901	1,024		
February	956	1,041		
March	1,196	1,204		
April	1,303	1,224		
Мау	1,346	1,191		
June	1,337	1,146		
July	1,343	1,178		
August	1,311	1,211		
September	1,271	1,260		
October	1,239	1,324		
November	992	1,121		
December	917	1,063		
Annual	14,112	13,987		

Chicago: 40deg Tilt

hicago IL Change Location		English Español	HELP	FEEDBACK
	RESOURCE DATA SYSTEM	INFO RESULTS		
RESULTS		12 20	1	11- (M
Print Results	System output may rang	13,29 te from 12,724 to 13,848		
	-,,,,,,,,			or more informati
Month	Solar Radia			Energy
	(kWh / m ² / c	day)		(kWh)
January	2.96			797
February	3.87			912
March	4.79			1,209
April	5.38			1,292
Мау	5.41			1,299
June	5.94			1,336
July	6.06			1,371
August	5.91			1,330
September	5.47			1,214
October	4.32			1,045
November	3.30			815
December	2.52			672
Annual	4,66			3,292

Ophius Project Teams

Where are all the Rater/Verifiers?

Grand total of: 3 Phius Raters in Texas (1 each in Houston, Austin, Dallas) 0 Phius Verifiers in Texas

Builders?

If we remove the listings with 3+ States served, there are: 11 Phius Certified Builders in Texas

Thank You!

Ryan Abendroth, M.Arch, CPHC Principle at Passive Energy Designs, LLC

Stefan Goebel, M.Eng., CPHC

President Ecotech Consulting & VP Phius Houston

PASSIVE ENERGY DESIGNS

